https://huggingface.co/docs/transformers/model_doc/bloom

BLOOM

BloomModel

classtransformers.BloomModel

(config: BloomConfig)

Parameters

  • config ( BloomConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

(input_ids: typing.Optional[torch.LongTensor] = Nonepast_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.Tensor, torch.Tensor], ...], NoneType] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.LongTensor] = Noneinputs_embeds: typing.Optional[torch.LongTensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonecache_position: typing.Optional[torch.LongTensor] = None**deprecated_arguments)→transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)

Parameters

  • input_ids ( torch.LongTensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length if past_key_values is None else past_key_values[0][0].shape[2] ( sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

If past_key_values is used, only input_ids that do not have their past calculated should be passed as input_ids.

Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer. call() for details.

What are input IDs?

  • past_key_values ( Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

Two formats are allowed:

  • a Cache instance, see our kv cache guide;
  • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

The model will output the same cache format that is fed as input. If no past_key_values are passed, the legacy cache format will be returned.

If past_key_values are used, the user can optionally input only the last input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all input_ids of shape (batch_size, sequence_length).

  • attention_mask ( torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,

  • 0 for tokens that are masked.

What are attention masks?

  • head_mask ( torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

  • 1 indicates the head is not masked,

  • 0 indicates the head is masked.

  • inputs_embeds ( torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

If past_key_values is used, optionally only the last inputs_embeds have to be input (see past_key_values).

  • use_cache ( bool, optional) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).
  • output_attentions ( bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states ( bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict ( bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • cache_position ( torch.LongTensor of shape (sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily to position_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.

A transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration ( BloomConfig) and inputs.

  • last_hidden_state ( torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

If past_key_values is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size) is output.

  • past_key_values ( tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)) and optionally if config.is_encoder_decoder=True 2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head).

Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if config.is_encoder_decoder=True in the cross-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states ( tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions ( tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions ( tuple(torch.FloatTensor), optional, returned when output_attentions=True and config.add_cross_attention=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.

The BloomModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import AutoTokenizer, BloomModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomModel.from_pretrained("bigscience/bloom-560m")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

BloomForCausalLM

classtransformers.BloomForCausalLM

(config: BloomConfig)

Parameters

  • config ( BloomConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

(input_ids: typing.Optional[torch.LongTensor] = Nonepast_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.Tensor, torch.Tensor], ...], NoneType] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = Nonecache_position: typing.Optional[torch.LongTensor] = None**deprecated_arguments)→transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

Parameters

  • input_ids ( torch.LongTensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length if past_key_values is None else past_key_values[0][0].shape[2] ( sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

If past_key_values is used, only input_ids that do not have their past calculated should be passed as input_ids.

Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer. call() for details.

What are input IDs?

  • past_key_values ( Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

Two formats are allowed:

  • a Cache instance, see our kv cache guide;
  • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

The model will output the same cache format that is fed as input. If no past_key_values are passed, the legacy cache format will be returned.

If past_key_values are used, the user can optionally input only the last input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all input_ids of shape (batch_size, sequence_length).

  • attention_mask ( torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,

  • 0 for tokens that are masked.

What are attention masks?

  • head_mask ( torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

  • 1 indicates the head is not masked,

  • 0 indicates the head is masked.

  • inputs_embeds ( torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

If past_key_values is used, optionally only the last inputs_embeds have to be input (see past_key_values).

  • use_cache ( bool, optional) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).
  • output_attentions ( bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states ( bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict ( bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • cache_position ( torch.LongTensor of shape (sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily to position_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.
  • labels ( torch.LongTensor of shape (batch_size, sequence_length), optional) — Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set labels = input_ids Indices are selected in [-100, 0, ..., config.vocab_size] All labels set to -100 are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]

A transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration ( BloomConfig) and inputs.

  • loss ( torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Language modeling loss (for next-token prediction).

  • logits ( torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states ( tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions ( tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

  • cross_attentions ( tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.

  • past_key_values ( tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of torch.FloatTensor tuples of length config.n_layers, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant if config.is_decoder = True.

Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

The BloomForCausalLM forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> import torch
>>> from transformers import AutoTokenizer, BloomForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForCausalLM.from_pretrained("bigscience/bloom-560m")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits

BloomForSequenceClassification

classtransformers.BloomForSequenceClassification

(config: BloomConfig)

Parameters

  • config ( BloomConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The Bloom Model transformer with a sequence classification head on top (linear layer).

BloomForSequenceClassification uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do.

Since it does classification on the last token, it requires to know the position of the last token. If a pad_token_id is defined in the configuration, it finds the last token that is not a padding token in each row. If no pad_token_id is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when inputs_embeds are passed instead of input_ids, it does the same (take the last value in each row of the batch).

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

(input_ids: typing.Optional[torch.LongTensor] = Nonepast_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.Tensor, torch.Tensor], ...], NoneType] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None**deprecated_arguments)→transformers.modeling_outputs.SequenceClassifierOutputWithPast or tuple(torch.FloatTensor)

Parameters

  • input_ids ( torch.LongTensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length if past_key_values is None else past_key_values[0][0].shape[2] ( sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

If past_key_values is used, only input_ids that do not have their past calculated should be passed as input_ids.

Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer. call() for details.

What are input IDs?

  • past_key_values ( Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

Two formats are allowed:

  • a Cache instance, see our kv cache guide;
  • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

The model will output the same cache format that is fed as input. If no past_key_values are passed, the legacy cache format will be returned.

If past_key_values are used, the user can optionally input only the last input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all input_ids of shape (batch_size, sequence_length).

  • attention_mask ( torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,

  • 0 for tokens that are masked.

What are attention masks?

  • head_mask ( torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

  • 1 indicates the head is not masked,

  • 0 indicates the head is masked.

  • inputs_embeds ( torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

If past_key_values is used, optionally only the last inputs_embeds have to be input (see past_key_values).

  • use_cache ( bool, optional) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).
  • output_attentions ( bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states ( bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict ( bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • cache_position ( torch.LongTensor of shape (sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily to position_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.
  • labels ( torch.LongTensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

transformers.modeling_outputs.SequenceClassifierOutputWithPast or tuple(torch.FloatTensor)

A transformers.modeling_outputs.SequenceClassifierOutputWithPast or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration ( BloomConfig) and inputs.

  • loss ( torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits ( torch.FloatTensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • past_key_values ( tuple(tuple(torch.FloatTensor)), optional, returned when use_cache=True is passed or when config.use_cache=True) — Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head))

Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see past_key_values input) to speed up sequential decoding.

  • hidden_states ( tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions ( tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The BloomForSequenceClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example of single-label classification:

>>> import torch
>>> from transformers import AutoTokenizer, BloomForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForSequenceClassification.from_pretrained("bigscience/bloom-560m")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>>
>>> num_labels = len(model.config.id2label)
>>> model = BloomForSequenceClassification.from_pretrained("bigscience/bloom-560m", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

Example of multi-label classification:

>>> import torch
>>> from transformers import AutoTokenizer, BloomForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForSequenceClassification.from_pretrained("bigscience/bloom-560m", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>>
>>> num_labels = len(model.config.id2label)
>>> model = BloomForSequenceClassification.from_pretrained(
...     "bigscience/bloom-560m", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

BloomForTokenClassification

classtransformers.BloomForTokenClassification

(config: BloomConfig)

Parameters

  • config ( BloomConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

Bloom Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

(input_ids: typing.Optional[torch.LongTensor] = Nonepast_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.Tensor, torch.Tensor], ...], NoneType] = Noneattention_mask: typing.Optional[torch.Tensor] = Nonehead_mask: typing.Optional[torch.Tensor] = Noneinputs_embeds: typing.Optional[torch.Tensor] = Nonelabels: typing.Optional[torch.Tensor] = Noneuse_cache: typing.Optional[bool] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None**deprecated_arguments)→transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

Parameters

  • input_ids ( torch.LongTensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length if past_key_values is None else past_key_values[0][0].shape[2] ( sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

If past_key_values is used, only input_ids that do not have their past calculated should be passed as input_ids.

Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer. call() for details.

What are input IDs?

  • past_key_values ( Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

Two formats are allowed:

  • a Cache instance, see our kv cache guide;
  • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

The model will output the same cache format that is fed as input. If no past_key_values are passed, the legacy cache format will be returned.

If past_key_values are used, the user can optionally input only the last input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all input_ids of shape (batch_size, sequence_length).

  • attention_mask ( torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,

  • 0 for tokens that are masked.

What are attention masks?

  • head_mask ( torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

  • 1 indicates the head is not masked,

  • 0 indicates the head is masked.

  • inputs_embeds ( torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

If past_key_values is used, optionally only the last inputs_embeds have to be input (see past_key_values).

  • use_cache ( bool, optional) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).
  • output_attentions ( bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states ( bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict ( bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • cache_position ( torch.LongTensor of shape (sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily to position_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.
  • labels ( torch.LongTensor of shape (batch_size,), optional) — Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

A transformers.modeling_outputs.TokenClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration ( BloomConfig) and inputs.

  • loss ( torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification loss.

  • logits ( torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) — Classification scores (before SoftMax).

  • hidden_states ( tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions ( tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The BloomForTokenClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import AutoTokenizer, BloomForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForTokenClassification.from_pretrained("bigscience/bloom-560m")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>>
>>>
>>>
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

BloomForQuestionAnswering

classtransformers.BloomForQuestionAnswering

(config)

Parameters

  • config ( BloomConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The BLOOM Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

(input_ids: typing.Optional[torch.LongTensor] = Noneattention_mask: typing.Optional[torch.FloatTensor] = Noneposition_ids: typing.Optional[torch.LongTensor] = Nonehead_mask: typing.Optional[torch.FloatTensor] = Noneinputs_embeds: typing.Optional[torch.FloatTensor] = Nonestart_positions: typing.Optional[torch.LongTensor] = Noneend_positions: typing.Optional[torch.LongTensor] = Noneoutput_attentions: typing.Optional[bool] = Noneoutput_hidden_states: typing.Optional[bool] = Nonereturn_dict: typing.Optional[bool] = None)

Parameters

  • input_ids ( torch.LongTensor of shape (batch_size, input_ids_length)) — input_ids_length = sequence_length if past_key_values is None else past_key_values[0][0].shape[2] ( sequence_length of input past key value states). Indices of input sequence tokens in the vocabulary.

If past_key_values is used, only input_ids that do not have their past calculated should be passed as input_ids.

Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer. call() for details.

What are input IDs?

  • past_key_values ( Cache or tuple(tuple(torch.FloatTensor)), optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the past_key_values returned by the model at a previous stage of decoding, when use_cache=True or config.use_cache=True.

Two formats are allowed:

  • a Cache instance, see our kv cache guide;
  • Tuple of tuple(torch.FloatTensor) of length config.n_layers, with each tuple having 2 tensors of shape (batch_size, num_heads, sequence_length, embed_size_per_head)). This is also known as the legacy cache format.

The model will output the same cache format that is fed as input. If no past_key_values are passed, the legacy cache format will be returned.

If past_key_values are used, the user can optionally input only the last input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all input_ids of shape (batch_size, sequence_length).

  • attention_mask ( torch.FloatTensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,

  • 0 for tokens that are masked.

What are attention masks?

  • head_mask ( torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

  • 1 indicates the head is not masked,

  • 0 indicates the head is masked.

  • inputs_embeds ( torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

If past_key_values is used, optionally only the last inputs_embeds have to be input (see past_key_values).

  • use_cache ( bool, optional) — If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).
  • output_attentions ( bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states ( bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict ( bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • cache_position ( torch.LongTensor of shape (sequence_length), optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily to position_ids, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.
  • start_positions ( torch.LongTensor of shape (batch_size,), optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence ( sequence_length). Position outside of the sequence are not taken into account for computing the loss.
  • end_positions ( torch.LongTensor of shape (batch_size,), optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence ( sequence_length). Position outside of the sequence are not taken into account for computing the loss.

The BloomForQuestionAnswering forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.