https://ieeexplore.ieee.org/document/4804817

The Unreasonable Effectiveness of Data

Learning from Text at Web Scale

The biggest successes in natural-language-related machine learning have been statistical speech recognition and statistical machine translation. The reason for these successes is not that these tasks are easier than other tasks; they are in fact much harder than tasks such as document classification that extract just a few bits of information from each document. The reason is that translation is a natural task routinely done every day for a real human need (think of the operations of the European Union or of news agencies). The same is true of speech transcription (think of closed-caption broadcasts). In other words, a large training set of the input-output behavior that we seek to automate is available to us in the wild. In contrast, traditional natural language processing problems such as document classification, part-of-speech tagging, named-entity recognition, or parsing are not routine tasks, so they have no large corpus available in the wild. Instead, a corpus for these tasks requires skilled human annotation. Such annotation is not only slow and expensive to acquire but also difficult for experts to agree on, being bedeviled by many of the difficulties we discuss later in relation to the Semantic Web. The first lesson of Web-scale learning is to use available large-scale data rather than hoping for annotated data that isn't available. For instance, we find that useful semantic relationships can be automatically learned from the statistics of search queries and the corresponding results5 or from the accumulated evidence of Web-based text patterns and formatted tables,6 in both cases without needing any manually annotated data.