Neighbourhood Components Analysis
Neighbourhood Components Analysis
Part of Advances in Neural Information Processing Systems 17 (NIPS 2004)
Authors
Jacob Goldberger, Geoffrey E. Hinton, Sam T. Roweis, Ruslan Salakhutdinov
Abstract
In this paper we propose a novel method for learning a Mahalanobis distance measure to be used in the KNN classification algorithm. The algorithm directly maximizes a stochastic variant of the leave-one-out KNN score on the training set. It can also learn a low-dimensional lin- ear embedding of labeled data that can be used for data visualization and fast classification. Unlike other methods, our classification model is non-parametric, making no assumptions about the shape of the class distributions or the boundaries between them. The performance of the method is demonstrated on several data sets, both for metric learning and linear dimensionality reduction.
Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.
Use the "Report an Issue" link to request a name change.
Do not remove: This comment is monitored to verify that the site is working properly